Friday 15 February 2019

E-Rickshaw and Power Theft in Delhi



                          It is pitch dark outside. Chotu is riding e-rickshaw through the heart of the city. His destination is clear, though it may differ from that of the previous day’s has been operating this vehicle for a couple of years. As Chotu could not afford the pleasure of having a new one, he hired a repaired one offered to him by a Babu, residing near to his colony. Babu’s men are punctual in collecting daily amount fixed as hiring charge, irrespective of his trips. On lean days, he finds it difficult to meet two end of life after paying hire charges, sundry expenses during his 10-12 hrs of riding etc. His mother is living separately in another thatched attic and Chotu’s income is the lone source of her income also. How he manages to pull on is a wonder to many.
                      He has now reached the destination and slowly removed the almost drained battery and moved to the other side of the park. The street lights are burning as if causing hindrance to his work. He proceeded further to the corner of park, near to a big banyan tree. There appeared a tall man from dark covering his face, exchanged batteries and the cash for charging also. Returned to the e-rickshaw, Chotu  is now moving to the opposite  direction aiming his colony to garage the vehicle.
                                          This is a common scene in Delhi after introducing e-rickshaw. There are more than 125000 e rickshaws operating in the capital city of India but licensed one are just one fifth of it. The charging facility is not adequate to cater the need of all e rickshaws, which needs 7-10 units per day per e rickshaw. How majority of others manages to function? The answer is Power Theft. There are thousands of Chotus in Delhi making the situation alarming. Power theft  is alarmingly high in Delhi. the cost of stolen Power is routinely passed to genuine electricity consumers who pay charges alarmly. Government and Discom should move in tandem to cub this social evil failing which the Discoms will be marching towards bankruptcy.


















Wednesday 6 February 2019

Measuring energy:




When you think of how difficult a task it was trying to measure something which you cannot see, cannot taste, cannot grasp and cannot hear, you will realize how great of an accomplishment it was for engineers like 
Oliver Shallenberger at Westinghouse to invent the watt-hour electric meter.
Since 1888 many other kinds of useful meters have been developed. When the average person thinks of a great invention, they think of the light bulb or television. However they don't realize that without good measuring devices almost none of our modern inventions could exist!

In this page we tell just a bit about meters and provide you links to some more technical explanations. If you ask 
Robert N. Hallthe inventor of the semiconductor laser (used everywhere in the world today) what his greatest invention was, he will tell you it was the lithium drift detector. From someone who really understands technology that tells you a lot about the importance of the tools we use to measure.


1.) Types of electric meters:

There are more types of meters, detectors, and measurement devices than could be possibly listed here, but we will list a few of the most prominent which have really changed our world.

Watt-hour Meter –
 This is one of the most important meters ever invented. This measures the amount of AC current used by a customer. With an accurate way to measure power devised in 1888, this helped make the electrical grid economical and in the 1890s the electrical industry flourished. On the business side of things it was necessary to measure use as it makes for a fair way to charge customers. The traditional watt-hour meter uses a disk that spins due to electromagnetic fields. A counter measures the number of rotations. The more energy one uses, the faster the disk spins.
           

.
 detects electric current .This was historically the name given to an 'ammeter', it works by using coils of wire on a base of a needle in between two permanent magnets. This is one type of "moving coil meter".Ammeter - measures electric current (amperes) There are many types of ammeters today.  Digital ammeters use a shunt resistor with volt meter and compute formulas to display the value.
Volt Meter - measures voltage (electrical potential) across a circuit
Ammeter –
measures electric current (amperes) There are many types of ammeters today.  Digital ammeters use a shunt resistor with volt meter and compute formulas to display the value. Volt Meter - measures voltage (electrical potential) across a circuit

Timeline of the History of Electric Meters:

Here is a short list of important events in the history by the Edison Tech Center.
1800 The electric age begins with Volta's battery which sparks many inventors and scientists around the world to start to experiment with electricity. There are no standards of measurement or meters to measure this force. No one yet understands what electricity is and therefore it takes another 90 years before more scientific explanations help to break down electricity into its elements which then are assigned standards by the IEC in Chicago and Paris in the 1880s-1890s.
1866 Transatlantic telegraph was completed. Basic galvanometer-type meters were used to set up telegraph systems.
1879 Thomas Edison desperately needs a way to measure the electricity his customers would use. He developed a chemical meter with two rods of copper in a solution, as power was used one of the electrodes dissolved, showing by mass how much power had been used. This invention was not ready for use when the Pearl Street Station started working with customers, so early customers got electricity for free. After a year Edison started using the chemical meter but it was not accurate and customers were unhappy.
Interesting Fact: JP Morgan ran 106 lamps from 3pm-6am but never paid more for this use since he only paid by the number of light sockets and for the physical bulb purchases.
1880s Elihu Thomson develops a chemical meter similar to Edison's except it used zinc sulphate bath which worked much better. Edison's companies immediately started using Thomson's meter as they were desperate to solve the problem of metering.
1880s Thomson builds one of the first reliable wattmeters. He used solid silver bars and brushes with an aluminum disk with a small motor. Once again everyone including Edison used Thomson's meter as a standard.
1880s Edison vs. the gas industry: Thomas Edison adopted Thomson's meters and changed to a model that charged customers for electricity use, however this angered many customers who had been convinced to change over from gas lamps because of the fact that the flow of electricity was free. Edison doesn't get enough credit for his taking the brunt of the gas vs. electricity battle. We have to thank Edison for hanging in there and operating at a loss for years before getting profit.
1886 Edward Weston develops a moving coil galvanometer type meter with stable permanent magnet which becomes the basis of Amp, Volt and Watt meters for the next 100+ years.
1880s Edward Weston refined a watt-hour based off of Thomson's work
1887 Oliver Shallenberger develops the first accurate voltmeter at Westinghouse with Philip Lange
1888 Oliver Shallenberger at Westinghouse develops a meter that is close to the modern watt hour meter and sets the new standard.
1890 Only 5% of US homes were equipped with electricity. Arc lamps for public street lighting and trolleys were the most profitable employment of the technology. The AC revolution of the 1890s would change that.
1892 J.A. Fleming starts work on what would become the vacuum tube in the 1900s.
1890s Elihu Thomson continues to improve electric meters. Thomson has been working with AC power since the 1870s and has more experience in the area than most people around at the time.
1890s The IEC - International Electrical Congress creates standards for measurement of electricity
1896 William Stanley develops a static ground detection meter. This method is still used today to help ground vehicles and facilities as a measure of safety.
This timeline was created by the Edison Tech Center, report copyright infringement by content strippers who target timelines like this.
1916 High Voltage Measurement: Chubb and others develop meters that use predecessors to vacuum tubes and make the first somewhat accurate ways to measure this dangerous and difficult form of power. Before this point they used the crude method of measuring the distance an electric arc could travel through air or a tube to figure out the high voltage.
1922 E.B. Moullin create the first real vacuum tube voltmeters using improved triodes.
1930 The IEC establishes more standard electrical units including: Hertz, Oersted, Gauss, Maxell, Gilbert, Var, and the Weber
1957 Rosewell Gilbert (of Weston) developed the dual slope analog-to-digital conversion circuit was developed and allowed for stable noise-reduced measurement by digital means.
1970s Digital multimeters begin to appear as the cost of solid state devices drops
1970s Vacuum tube meters finally kill off moving coil galvanometers which were still in use by large companies. Many employees take the older meters home and these enter collections including the Edison Tech Center's collection later on.
1990s Digital multimeters outnumber tube-based or magnetic multimeters
2000s Digital multimeters are produced by many companies, some reach prices as low as 90 cents per meter while others made by Fluke or Milwaukee have a higher standard of quality and reliability and fetch prices in the hundreds of dollars.
[edisontechcenter.org]

Sunday 11 November 2018

Some of us may be skeptical about the tick-tick sound heard from the cars’ indicator or turn
signal. Have you ever heard how this sounds? We may be skeptical about the turn-talk sound
that the cars are indicator or the signal. How did this sound? There is no reason why some
manufacturers are trying to reduce this volume of cars as new version releases.. Bye-metallic
sprinkler in the laser is simply  makes the sound click-click on the indicator as it is 
heated and cooled Before explaining this, the history of indicators will be interesting. By
the early 1920s, there were different mechanical indicators signaling in cars. But the sound
of the tick-tick sound you hear is in the early 1930's.
Joseph Bell patented the first electrical device that flashed — and then in 1939,
Buick introduced turn signals as a standard feature.. By the late 1930s, American 
car maker Buick regularly started flushing turn signals in their cars. Similarly, 
other car makers followed the similar procedure. By 1950, the indicator / turn signals
were forced into cars. From that point onwards, this voice is accompanied by indicators.
Thermal style flashers used to drive electricity to the indicator bulbs. By-metallic sprinkler
 in the flashlight is used to power the bulb into small intervals. The click-click sound on 
the indicator is the result of the heat and cooling of the spring.
But the sound continued even from the thermal style floors and the electronic style
flashers Electronic-style flashers are due to click-click sound and hese flashers work 
through a small chip.




                

Thursday 19 April 2018

Why power theft in India is a complex problem?

Film Review
Why should I be scared of the government when electric current doesn't scare me? asks Loha Singh, who purloins electricity and provides illegal connections for a living in Katiyabaaz (Powerless), a riveting new documentary on power theft in India.
Singh, an irascible young man with a gift for invective, is the pivot around whom the film rotates.
He snaps off and mangles wires to the main public supply cables for a pittance to provide electricity to scores of homes in a decaying city. His grateful customers regard free electricity as a right or buy stolen power because they cannot afford to buy it. One of the most poignant moments in the film is when Singh returns to his fragile mother in their crumbling family home and she implores him to "leave this dangerous job" and do something honourable for a living. Singh's eyes well up in a moment of self-realisation of his bleak and hopeless life.
Loha Singh is, at once, the hero and villain of Katiyabaaz. Introduced to the filmmakers Deepti Kakkar and Fahad Mustafa by a drinking buddy, he is a man who, as Mustafa tells me, "typifies [the city of] Kanpur - a swaggering pride arising from having to make do in the most desperate of circumstances".

Shortages

The film is set in Kanpur, which once prided itself as the Manchester of the East for its thriving factories and is today a derelict city, teeming with people and battling shortages. Thickets of electricity wires hang precariously over congested roads as residents endure up to 16 hours of power cuts a day. Three million residents live without power. Traffic crawls and the air is polluted. Water is scarce.
A well-meaning and seemingly efficient woman officer arrives to take charge of the bankrupt state-owned power supply company. She vows to trim losses, make consumers pay their bill on time and launches a drive against power thieves. She also infuriates a smooth local politician belonging to a powerful regional party who, at one point, barges into her office railing against her initiatives. "Both the poor and rich steal electricity," she says. "How much can the government subsidise?"
She is right. In Uttar Pradesh, one of India's most politically influential but electricity-starved states where Kanpur is located, a fifth of the more than 10 million consumers are typically without power at any given time. Transparency International found that the state's public electricity providers are widely viewed as corrupt.
A study found that power thefts in the state typically rise before local elections, suggesting that it is linked to large-scale theft by people who are likely to vote a politician who turns a blind eye to the problem. Interestingly, the study found that power theft in Uttar Pradesh was more about "political capture of public service delivery by the local elites" rather than political criminality or weak institutions.
In Katiyabaaz, however, both the power thief and his consumers appear to be struggling to live with dignity - and power.
The film, which took two years and 20m rupees ($316,828; £197,869) to make, follows the fortunes of the power thief, the bureaucrat and the politician through a series of incidents in the run up to state elections in Uttar Pradesh.
In the end, the populist pro-free power politician wins the elections. The bureaucrat is transferred to an insignificant town. Harried consumers breathe easy. The power company continues to bleed with a third of its losses caused by power theft. Kanpur still reels under 15 hours of blackouts a day. Loha Singh continues to risk his miserable life as a power thief, snapping wires by day and getting high on cheap booze at night.
"Change is tough," the polite woman officer says in a revealing interview in her mosquito-infested government bungalow. "I have to take the middle path, use softer options in the beginning. If I start tough, I will go," she says.
She goes, anyway. The more things change, the more they remain the same. Katiyabaaz holds out no promise of a better-lit future.
In many ways, this dark, moody, slyly political and occasionally funny film is a perceptive commentary on why change is so tough - and complex - in India.[Courtesy:

Thursday 4 May 2017

Power Theft-will it build darkness in India?




                       India, the largest democratic country of the world, provides shelter to more than 1.25 billion people. It is home to three times the population of the US though geographically only one third of it. The infrastructure has been developed enormously since its independence in 1947 but, even now many villages do not have electricity. Uninterrupted power is dream for most of the population. In this scenario, strange it may sound about 132 Billion units of electricity is pilfered in India during 2011-12. About 70% of population of India still lives in rural areas where agriculture provides the main livelihood to the majority. Many people do not have electricity supply and even when it is available, supply of electricity is erratic. When a utility starts providing 24 hrs power supply to certain area, it finds a major place in the newspaper. The Ministry of Power, though announced ‘Electricity to all by 2012’ as its objective, could not achieve it so far and now extended traget to 2019.
 People have to wait for hours to get the electric supply restored once a snag develops somewhere, especially in rural area where ‘no power’ is accepted as destiny. Development of energy sector does not take place in tandem with the increasing demand and ever spreading menace of Power theft has worsened the situation. The rapidly growing population and rising urbanization has put great stress on energy sector. India is power stressed. Increasing vitality of economy is not matched by similar vigour in the Power sector which is yet to wake up to the 21st century challenges.
It is a fact that installed capacity has recorded growth. From a mere 1713MW installed capacity in 1950s, it has risen to about 314642 MW by 2017. (CEA-Installed Capacity, 2017)About 33% of Generation capacity comes under the states, 25 % under the Central Government and the rest in private sector, which is now substantially increasing role, thanks to new policies of the Government that gives increasing thrust to Mega projects and Renewable sector with private partnership. Vertically integrated State Electricity Boards and private utilities exist in Indian power sector where electricity is a concurrent subject as both the center and state governments have definite role in evolving direction and guidelines. But it is sad fact the power theft has not been given due importance in the scheme of things.
India has approximately 6-10% shortage in energy demand and the peak demand deficiency in some states is nearly 25%, compels the Load Despatch Centres to throttle down resulting brown out everyday peak period.  About 80% of the villages are electrified but it doesn’t mean that all households are benefited. The Transmission and Distribution losses are restricted to around 10% in better managed utilities in the developed countries. Of the every 100 units generated in India, 35 units are lost on an average due to technical and non-technical losses. (Power Sector, 2017) This staggering figure 77% in some states! This sorry state hinges as much on inadequate development of transmission and distribution lines as on other factors including Power theft and irrational tariff structure.
Raising tariff even for good reasons may not go well with the people. The distribution companies take care not to antagonize the public as they know the proclivities of the public. People are happy if a utility charges less and ready to overlook the poor standards and service they receive. This is the basic attitude of the middle class Indians which forms the majority of electricity consumers. Perhaps this might have prompted to play safe by keeping current charges low thus making it difficult to go for the necessary upgrading of lines and renovations which requires huge investments. It is a sad fact that the Power sector is concentrated mainly on increasing generation capabilities resulting in increased capital cost  rather than loss reduction exercise which includes implementation of a mechanism to thwart  power pilfering..
The distribution loss in India has increased by 432% over a period of about a quarter of a century due to the reasons explained above. No country can claim a fair position as far as losses are concerned. The approximate cost of the distribution loss for the last quarter century comes to around $100 Billion. India has adopted the European system of drawing more Low-Tension lines, thanks to the British rule, which passed on certain technical legacies along with culture and arts!. Many European countries are very small, even smaller than majority of Indian states. Hence their distribution loss is considerably low.
How have we reached here? Theft of energy is the major singular cause of all disorders and problems in power utilities. The money value involved in theft is about $4.5 Billion dollar i.e., about 1.5% of GDP as per the statistics of the World Bank, few years back. [Bhatia & Gulati, 2004] Poverty drives many to steal electricity and they form a majority, while a few consider it as a white collar theft. (Prashar, & Sreenivasan, ,2015) Delhi, the capital city, stands out as the worst case of power theft. As much as 45% of the power generated was lost in the capital even after 2-3 years of private participation .Now it has been brought down substantially but few Divisions under BRPL and BYPL   are notorious for 40-60% loss.
 What stops utilities from eliminating Power theft? Vested interests of the stake holders including appeasing vote bank, consumers, utility employees, poor enforcement of law, habit of utilities to compound the power theft cases, prolonged litigation and, of course, the socio- political situations. The poor performance of state owned utilities in reduction of loss is due to weak accountability, poor governance and inadequate investment. They have little incentives to improved performance and any hard work goes unappreciated. Private participation has raised hope of better efficiency and accountability .However, it turns out that privatization of power sector   is not a panacea for eliminating power theft.
             India is world’s sixth largest energy consumer, accounting 3.4% of global energy consumption. Due to its economic rise, the demand for energy has grown at an average of 3.6%per annum over the past three decades. Distribution loss of Indian Power sector, having long low tension lines, is ‘surrogate’ to Power Theft. [Steadman, 2011]  Even after engaging the Central Industrial Security Force (CISF), Delhi continues to enjoy the status of ‘capital of Power theft in India’ and here even 20% AT&C loss is considered as fair. The problem of corruption and  vested electoral interest have prodded authorities to  turn a  blind eye to theft of power  and many go Scot free  if they are very close  to  ”power”. The erstwhile Delhi Electric Supply Undertaking was fed up with Power theft at the connivance of employees. Now the power distribution has private participation. When the new power companies have started conducting surprise inspections to detect power theft, the unscrupulous people have shown signs of panic.
               It is estimated that about 777 Million units of electricity is being pilfered in Hyderabad city, the cyber capital of India, in a year alone.(Sreenivasan,2017) The cost works out to $ 75 Million.In some part of the city designated as ‘’sensitive,” less as 50% of the consumers pay electricity charges, even though thousands of electricity meters are installed on poles. Here, professional power theft perpetrators are available who perform tampering of energy meter either permanent or temporary nature. The Power sleuths in India has the credit of detecting more than 75 varieties of high-tech Power theft in India in Electronic meters, though these meters are claimed to have state- of-the- art technology. Remotely operated Power theft, Frequency manipulation, Theft using Electro-static discharge (ESD) on energy meter, Harmonics and other spurious signal injections, umpteen methods of hardware tampering on energy meters are few methods to mention. (Sreenivasan, 2017) The power sector all over the world is closely observing new products that meet the challenges raised by the perpetrators and recently an Indian Company has found  a partial solution to Power theft using Electro-static discharge in high end meters.A lot more is expected from meter manufacturers all over the world.
        Even meters installed in substations are not spared by perpetrators.   The feeders of a Sub- station in Musafar Nagar, a city in North India were tampered with a remote operated shunt. The Substation was feeding power supply to steel furnace factories nearby. The raid was conducted under the leadership of the Minister and found energy meter- not at the consumers’ premises, but at the Substation- was tampered with modern-day technology, reminding us the usage that ‘fence itself eating the crop’. This may be a joint effort of many who wanted to sabotage the energy audit system also.
         In Punjab, Power theft is rampant in border districts especially for operation of tube wells and steel re-rolling mills which are current intensive in nature. Unfortunately, any officer who puts an effort to tackle this menace invites transfer, harassment, victimisation and a host of troubles .Farmers have been provided with subsidized or free electricity through out the country and it is one of the zones where electricity theft and misuse are maximum. In the state of Punjab, when the technicians of utility went to attend a fuse off call from a consumer, were surprised to find that even the Distribution Transformer (DT) was stolen for its metal parts to be sold after taking them apart in scrap market   . This is not an instance of isolation.
          If we think that power theft is a rural phenomenon or only prevalent in slums, we are for a rude shock. In Mumbai City alone, irregularities involving 1280 Million units were detected in 3 years. Even the constitutionally recognized bodies such as Zilla, Taluk and Gram Panchayath (Local self Government) in Bangalore are reported to have performed power theft sending a shock message to the society!  Even the small state of J&K is losing $ 0.25 Million a day by way of energy theft. With the onset of winter, the energy consumption moves up by 20%.The resort to unscrupulous method is rampant even among the people at the topmost rung of the society who have developed meanest trick of pilferage according to the Power Development Department. The department has no effective Anti Power theft squad but a few officials who could not unearth even a small fraction of abnormality.
    Pilferage of power in the name of religion is taken for granted in India. It occurs during almost all festivals, irrespective of the community or the state. A report says 97% of the organizers of festivals in Maharashtra State commit power theft. It’s very difficult to detect power theft during that time, as all devotees gather and attack the enforcement officials, as if the officials are from other communities or an atheist deliberately disturbing the festival. Maharashtra State Electricity Distribution Company (MSEDCL) has gone to the extent of advising various organizations that conduct festivals, not to venture into theft during the time of festivals. Usually the light and sound contractors arrange generators for temporary use; but they seldom operate them, instead venture into stealing electricity.
        General elections are yet another occasion to perform power theft in India. The police are pre occupied with keeping the law and order and usually the menace of Power theft goes unnoticed. In Tamil Nadu, during general election the venue of a leader’s campaign spot was illuminated with about 300 fluorescent lamps. The party had stolen electricity using hooks to add colour and light to the huge hoardings and stages and also to display the huge election symbols which are decorated with small bulbs. When top leaders come to political meetings, an engineer is used to be posted at the place to ensure uninterrupted supply of stolen power! In India’s most populous state, Uttar Pradesh, large scale Power theft is reported during general election time. Another significant aspect is the abnormal use of electricity for agriculture purpose during these times, a clear indication of misuse and theft. This has been done with the connivance of local leaders of ruling party.( Golden & Min, 2012)
        The abduction of an engineer belonging to a utility from one of the North Eastern states forced the utility to postpone the implementation of a plan to revamp collection procedure.  This happened when the utility was just about to collect arrears and check power theft. In order to boost the morale of the employees, a Managing Director and Senior officers of a power Utility in North India, who decided to have first hand information of theft detection had to face unruly mob and to retreat after stone pelting .A senior Power sleuth in the Cyber city of Hyderabad had to seek police protection even after his retirement from service, following continual threat of perpetrators
                                             The mighty people and even the law makers indulge in theft of electricity. The Indian laws are  stringent to punish the guilty in the case of electricity theft but the time spend to conclude a case is too long. The state of affairs in Power theft is pennywise and pound foolish. As the law permits to compound the offence, its magnitude comes down to the level a petty traffic violation case, where discharge of offence can be done by paying a small penalty. Utilities across India have not treated power theft seriously the way it should be. The reply to RTI to Discoms across India yielded poor responses and many utilities even do not have the statistics of theft detected.
                                         Indian power sector is crippled by theft on one side and misuse on the other side. Energy wasted in daily life on account of less efficient electrical appliances is shocking. The simple guesstimate of waste and power theft says even the best stabilizers are only 80% energy efficient. Considering 10 million odd Air Conditioners in India, which are in operation for 5 hrs a day, the loss would be 20 MU per day! And the annual loss would be $600 Million!!. With 314 GW power generation capacity, the energy available per day will be 5275 Million units at 0.7 plf of which 20-25% ie. 1055 Million Units of electricity is lost by way of Power theft every day causing annual loss of  6.5 Billion to the exchequer!
Energy meters are no more instruments for recording electricity consumption. Consumer Metering and feeder metering are  one of the key approaches to reduce losses and theft, coupled with the replacement of the conventional electro mechanical meters with new electronic meters and the deployment of state-of-the-art emerging technologies such as, AMR and AMI etc.to assist in loss reduction and improved revenue collection. This may be more intensively done with the aid of centrally aided Schemes and the requirements of energy meters in coming decade will be more than of 100 million. The possibility of rolling out smart meter technology is yet another way of controlling power theft.Utilitiles are different in nature in India and hence the strategy to reduce theft also varies. There should not be a common system thrust upon to Discoms as strategy to reduce theft in one utility need not be successful in another. Unless 100 % consumers are metered and electricity at various distribution points are monitored, the Discoms can never think of attaining a healthy financial status.

Conclusion
                      The above instances are only tip of the ice berg.   Many utilities, now at a snail's pace, realize the need to control Power theft, lest they should fall into darkness. Various training to power engineers are being arranged and regularly updates them with latest happening around the world. But crooks always have the ability to stay one step ahead of the anti power theft detection system. They stay in their business purely through their flair to circumvent any challenge that comes their way. The R&D of electricity theft is moving faster than the best metering system available in the world, which was revolutionized with the advent of ICs and programmable logic circuits. India is now aiming at application of Information Technology in Power sector especially for controlling Power theft and losses. The R&D units of meter manufacturers have a great role to play in designing tamper resistant energy meters with more features to withstand the challenges from field. The repercussion of privatization on long run is not clear as of now and the present indication points finger that privatization is not the single remedy to control power theft. As the Indian power sector has now realized need of controlling power theft incorporating latest technology, it can be brought back to the right track and effective laws and updated theft detection system with the aid of modern power system tools would help control power Theft.(The author can be contacted  tamperfinder@gmail.com)

References


Bhatia, B., Gulati, M.[2004]. Reforming the Power Sector: Controlling Electricity Theft and Improving Revenue. Public Policy for the Private Sector Note 272, World Bank, Washington, DC.

CEA-Installed Capacity.(2017).Cea.nic.in. Retrieved 11 February 2017, from http://www.cea.nic.in/monthlyinstalledcapacity.html

Golden, M. & Min, B. (2012). Theft and Loss of Electricity in an Indian State. Seattle: International Growth Centre
 http://powermin.nic.in/, Ministry of Power, Government of India

Parashar, A. and Sreenivasan, G. (2015) Power Theft and Glorification of Crime by Indian Media –A Case study based on the campaign organized by India Against Corruption [IAC] in Delhi, THE DISCUSSANT, Journal of Centre for Reforms, Development and Justice, Jan—Mar 2015 Vol.3 No.1,Pp 47-54

Power sector (2017). Retrieved 11 February 2017, from http://www.icra.in/Files/ticker/SH-2014-Q4-1-ICRA-Power.pdf

Rengarajan.S & Loganathan.S[2012] Power Theft Prevention and Power Quality Improvement using Fuzzy Logic, International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Issue-3
Sreenivasan, G,Power Theft(2016) M/s PHI Learning (P) Ltd,New Delhi.

Steadman, K. U.[2011] Essays on electricity theft, Essays on electricity theft, State University of New York at Binghamton,Retreived from http:// www.binghamton. edu...spectus-by-k-steadman.pdf

.[Courtesy-IEEMA Journal.,March 2017]

 

Tuesday 27 September 2016

Solar Power-A single solution for Power sector issues??

 Solar power curtailment in Tamil Nadu is mostly due to Tamil Nadu Generation and Distribution Corporation (TANGEDCO) opting to buy cheaper power from the exchanges at Rs 3/kwh rather than paying Rs 7.01/kwh to independent producers/developers with whom it has signed agreements, according to a report by Mercom Capital Group. Curtailment refers to energy produced that is not taken up by the grid.
The average market clearing price in July was just Rs. 2.16 on the Indian Energy Exchange, a 7 per cent drop month-over-month, the research firm said in its India Solar Quarterly Market Update.
Spike in generation
The increase in renewable energy addition has caused some solar power curtailment issues in Rajasthan and Tamil Nadu where discoms (distribution companies) have flouted the ‘must run’ status of solar power, thereby negatively affecting developers, as per the report.
Mercom said the problem was more pronounced in Tamil Nadu, especially in high wind energy density areas when wind and solar generation peak simultaneously.
Earlier this month, The Tamil Nadu Electricity Regulatory Commission had asked TANGEDCO to technically justify why it had asked solar power plants to back down from the grid, in a petition filed by the National Solar Energy Federation of India.
A senior official from TANGEDCO said that cheaper power gets picked up first. “There is no must-run status to solar as in the case of wind. The utility is buying almost 3,500 MW of cheap wind power.
“So with renewables itself, we have this system of picking up the cheapest,” he added.
In Tamil Nadu, solar projects commissioned before March 2016 has a tariff of Rs 7.01 per kwh, while projects commissioned after April 2016 has a tariff of Rs. 5.10 per kwh.
Mercom also said any solar project development in Tamil Nadu was at the developer’s own risk. “Unless things change drastically, we advise investors to stay away from the State,” it said.
Tangedco is also gearing up to launch a tender for procuring 500 MW of solar power through competitive bidding.
Asked whether the current curtailment issue would hurt the tender process, the TANGEDCO official said cheaper power gets better evacuation.
“Solar power at Rs. 5.10 is now getting priority evacuation ahead of the power that costs Rs. 7.01 a unit.”

TANGEDCO has managed to buy power at a significantly lower rate of Rs. 3/kwh[The Hindu]